Guidance Number: 84 | | Process
step 1 | Process
step 2 | Process
step 3 | Process
step 4 | Change to conventional finished product test | Rationale | Example | |-------------------------|-------------------------------|---|---|--|--|---|--| | Attribute 1 | - | | | | End product test 1 required | CQA tested off line as normal | | | Attribute 2 | | | On line
monitoring and
control of CQA | | End product test 2 removed | Control implemented and end product
test removed based on on line
monitoring and control of CQA(s) | NIR used on line to
stop drying once
product reaches
specification | | Attribute 3 | | Critical
Process
parameter
control | | Critical Process
parameter
control | End product test 3 removed | Control implemented and end product
test removed based on control of
CPP(s) | Particle size
controlled by contro
of granulation
parameters and
milling parameters | | Attribute 4 | | | On line
monitoring of
CQA | Critical Process
parameter
control | End product test 4 removed | Control implemented and end product
test removed based on on line
monitoring and control of CQA and
control of CPP | NIR used on line during blending to monitor blend uniformity; On line weight monitoring with feedback to press used to control weight variation. | | Attribute 5 | Raw material
input centrol | | | | End product test 5 removed | Control implemented and end product
test removed based on control of raw
material input | klertification carried
out on raw materials
with effective
material control
allowing replaceme
of end product ID te | | Attribute 6 | | | | | End product lest 6 removed | End product test removed based on
high PbCpk | Impurities test in
drug product
(degradants)
removed based on
high process
capability and
process
knowledge/control | | Attribute 7 Attribute 8 | | | | | End product test 7
substituted for test 8 | Measurement of one attribute based
on known correlation with another
attribute allowing test elimination | Use of disintegration
in lieu of dissolution
based on known
correlation | | Attribute 9 | | | | End product test
carried out in-line | End product test 9 moved on line | Off line end product test replaced with
in-line monitoring | In line monitoring of
CU of tablets post
compression | Table 1: Optional approaches to demonstrate product quality as part of an RTR testing strategy. **Table 1: Continuous Process** | | Conventional
Testing | RTR | Rational | |--|-------------------------|---|---| | Blend
Appearance | Visual | Visual | No change | | Blend
Potency &
Content
Uniformity | HPLC | On-line fast NIR measurement | Blend released based on CoA based on overall Potency and C.U. calculation for the entire continuous run | | Moisture | KF | Remove or replace with
in-process blend NIR
measurement | Based on historical data analysis and
lack of blend water uptake
Moisture will remain part of stability
testing | | Impurities | HPLC | Remove, replace with the API impurity result | The formulation conditions do not
create any further degradation path
and risk | | Capsules
Potency &
Content
Uniformity | HPLC | Replace with Blend
Potency & statistical
weight control of
capsules using NETT
system | The API concentration above that needed to allow C.U. based on weight control. NETT system provides in-process weight measurement & control. The NIR system provides in-process measurement & control of blend C.U. | | Dissolution | Dissolution Testing | Under evaluation | The dissolution has been found to be dependant on the continuous blending and compaction conditions | NOTE: Shelf life testing as per conventional specification **Table 2: Batch Process** | - | Conventional testing | RTR | Rationale | |----------------------------|-----------------------|---|---| | | | | | | Appearance | Visual | Visual | No change | | Identity 1 | HPLC
TLC | Identity by NIR on API charged to process | NIR ID of tablets can be inferred from ID testing of raw materials. API remains within a closed manufacturing system and quality system ensures material control. Discrimination of measurement allows switch from 2 ID tests to 1. | | Potency | HPLC | In line assay NIR on tablet cores during compression | In-line NIR will deliver real time
information on potency over a wider
portion of the batch than that covered
by off line testing. | | Uniformity of dosage units | HPLC | Must comply if tested' & In
line assay NIR on tablet cores
during compression with large
N specification | In-line NIR coupled with in line weight control will deliver real time information on content uniformity over a wider portion of the batch than that covered by off line testing. | | Impurities | HPLC | None - Testing only at stability. | Test removed based on high capability
(Ppk), parameter control and
understanding of formation conditions
for DP impurities. | | Disintegration | Disintegration tester | Disintegration tester | No change | | Water determination | At line NIR | At line NIR | No change | | Microbial purity | Ph Eur (skip lot) | Ph Eur (skip lot) | No change | | Dissolution | Not tested | Not tested | Disintegration used in lieu of
dissolution based on high solubility
compound class | NOTE: Shelf life testing as per conventional specification