Table I Probability of Instrument Failure [MTBF = mean time between failures] | | Risk Level → | Low | Medium | High | |-----------------|--|--|--|--| | | | | | Ĭ | | | Numeric Ranking → | (1) | (2) | (3) | | | This Instrument
(The intent is to use
history as an indicator of
probability) | Have more than 2 years of records, history shows low rate of calibration OOT (MTBF > 24 months) | Have less than 2 years of
records, history shows low rate
of calibration OOT | Have no historical records, or
records show MTBF < 24
months | | | Identical Instrument
(make and model) | Have 3 or more identical
instruments
(MTBF > 24 months) | Have 1 or 2 identical
instruments
(MTBF > 24 months) | Have no identical instruments to
benchmark | | History | Similar Instruments (The concept is to determine if there are instruments of similar design and functionality utilized in the intended environment that may yield performance data for use as a predictor, i.e. show low risk based on demonstrated reliability) | Have several (e.g. 10) similar (in type, technology, range) instruments in similar environments (MTBF > 24 months) | Have a few similar instruments in similar environments (MTBF > 24 months); | Have no similar instruments in similar environments | | | | | | T | | | Temperature and
Humidity (both operating
and storage conditions) | Temperature and humidity are
stable and are always within
manufacturer's recommended
range | Temperature and humidity vary,
but always stay within
manufacturer's range | Temperature and humidity are
not known or may exceed
manufacturer's range | | ntal | Power line / Electrical
Disturbances | Instrument is non-electric | Instrument is battery powered or
well-filtered and protected from
power disturbances and
lightning | Instrument is located in an
electrically "noisy" environment,
or may be susceptible to sags,
surges, spikes, and severe
electro-magnetic interference
(EMI) | | Environmental | Dust / Dirt / Chemical /
Wash down | Instrument is located in a clean,
dry, area that does not get
washed down | Instrument is in a protected
cabinet, or removed for area
wash down, light dust, and no
chemical exposure | Instrument is in an exposed,
dirty environment subjected to
frequent wash downs, or
chemical exposure | | | Vibration and shock | Instrument is permanently
mounted in a stable environment | Instrument is portable and
moved frequently, or may be
exposed to occasional vibration
or shock | Instrument is subjected to
severe shock and vibration | | | Physical Damage | Instrument is kept in a
segregated or protected area | Instrument is located in a
moderate traffic area and
potentially susceptible to contact
with equipment or personnel in
transit | Instrument is located in a high
traffic area and susceptible to
contact with equipment or
personnel in transit | | | Dance of ingrets the | Instrument is appropriated at a | lastament is appealed at | Instrument is appropriated at | | Range of
Use | Range of inputs the
instrument is subjected
to | Instrument is operated at a
single fixed setting in the middle
portion of its designed functional
range | Instrument is operated at multiple settings throughout the middle 80% of its functional range | Instrument is operated at multiple settings across the entire functional range or at a fixed setting at the upper or lower limit of the functional range | | Age | Infant mortality (start-up
failure) or aging
components | Instrument has been in service
for >3 months but less than 5
years | Instrument has been in service
for less than 3 months, or
greater than 5 years | Instrument has been in service for over 10 years | ## Table II Severity of Instrument Failure* | Seve | erity of Instrument | rallure | | | | | |-----------------|---|--|---|---|--|--| | | Risk Level → | Low | Medium | High | | | | | Numerical Ranking* → | (1) | (2) | (3) | | | | Human
Safety | Instrument's criticality to
plant safety | Instrument is not part of a
safety system | Instrument is part of a safety
system, but is redundant
(secondary) | Instrument is a primary component of a safety system; no redundant instrumentation is deployed | | | | | landa and a sittle site of | landa and a financial fi | | | | | | Environmental | Instrument's criticality to the operating environment | Instrument is not part of an environmental system | Instrument is part of an environmental system, but is redundant (secondary) | Instrument is a primary component of an environmental system, no redundant instrumentation is deployed | | | | | | | | | | | | GMP / Product | Impact of performance
failure on product quality | Instrument is part of a "No
Impact" system, failure to
conform with performance
specifications/expectations
would not adversely
impact the quality of
product | Instrument is part of a "Indirect
Impact" system or an "Indirect
Component" of a "Direct Impact"
system; failure to conform with
performance
specifications/expectations could
adversely impact product quality,
however, there is 100%
testing/verification downstream in
the process | Instrument is a Direct Impact component in a Direct Impact system with no downstream verification or testing; failure to conform with performance specifications/expectations could adversely impact product quality, | | | | | learned of a of contract | F-11 | Fribando and servit | 5-il-made and security | | | | Production | Impact of performance
failure on operational
efficiency | Failure to conform with
performance
specification/expectations
would not adversely affect
production speed or
efficiency | Failure to conform with
performance
specifications/expectations would
adversely impact the speed
and/or the efficiency of the
operation | Failure to conform with
performance
specifications/expectations would
cause a halt to production | | | | | The intent is to quantify the | Performance failure | Performance failure can be | Performance failure results in | | | | Cost | additional cost incurred by instrument performance failure | results in no additional cost | mitigated with minor additional resources | major damage, additional failures,
or the need for product rework or
rejection | | | | | | | | | | | | Energy | Impact of performance
failure on energy
consumption | Performance failure has
no effect on energy
efficiency and
consumption | Performance failure causes a minor increase in energy consumption, or loss of efficiency | Performance failure causes a
major increase in energy
consumption or major loss of
efficiency | | | | | | | | | | | ^{*}Note: A severity ranking of "Zero" [0] is possible. There are some potentially calibrated instruments that will have no impact if they are out of tolerance and are candidates for removal from the calibration program and subsequent categorization as "No calibration necessary" or "For reference only". Instruments in this category should be clearly labeled in the operation. # Table III Detectability of Instrument Failure | | Risk Level → | Low | Medium | High | |------------------------|---|---|---|---| | | Numerical Ranking → | (1) | (2) | (3) | | Automatic
Operation | Automated verification of critical product characteristics/parameters | 100% or continuous online
inspection/analysis (PAT) of
critical
attributes/parameters;
redundant stage release
testing | Periodic online
inspection/analysis of critical
attributes/parameters
redundant stage release
testing | No automated online
inspection/analysis of critical
attributes/parameters, no
stage release testing. | | Manual
Operation | Human interventions or audits to
verify resulting product quality | 100% or continuous online
inspection/verification of
critical
attributes/parameters; with
or without stage release
testing | Periodic
inspection/verification of
critical
attributes/parameters; with
stage release testing | No inspections/verifications
during the process and no
stage release testing | | | | lesung | | | Table IV FMEA Ranking Criteria and Failure Scores using a Three Point Ranking System | | Probability of Risk | Severity of Risk | Detectability of Risk | | |----------------------|--|--|---|-----------------------| | Numerical
Ranking | (Table I)
Criteria used: Instrument
history, environment,
range of use, & age | (Table II) Criteria used: Impact on human safety, environmental, GMP/product, production, cost, & energy | (Table III) Criteria used: Automatic operation or manual operation, operator verification | Maximum Risk
Score | | 1 | Low | Low | Low | 1 | | 2 | Medium | Medium | Medium | 8 | | 3 | High | High | High | 27 | The following frequency period based on risk score is recommended: | Risk Score
Examples | Overall Risk
Description | Suggested Calibration Frequency Interval change | | | |------------------------|-----------------------------|--|--|--| | 01 | Negligible | Consider extending calibration interval up to 36 months | | | | 02 | Very Low | Consider extending calibration interval up to 24 months | | | | 03-06 | Low | Consider extending the calibration interval x2
(up to a maximum of 24 months)
(i.e. 6 months → 12 months) | | | | 08 | Medium | Consider extending the calibration interval by a factor of 1.2x to 1.5x, (up to a maximum of 18 months) (i.e. 3 months → 4 months, 12 months → 18 months) | | | | 09-12 | Med / High | Maintain the same calibration interval,
(re-evaluate the risk score in 12 months) | | | | 18 | High | Consider shortening the calibration interval by a factor of x .5 (i.e. 12 months → 6 months) | | | | 27 | Very High | Consider shortening the calibration interval to a
very short period (i.e. 3 months) and consider re-
engineering the instrument system to reduce the
risk score | | | # Examples of Instrument Calibration Interval Change Requests The sample risk assessments below are to serve as "examples" only and used as illustrations of this approach. Actual situations require a Team assessment and review of local and site conditions. #### Example #1: <u>Instrument:</u> Temperature Transmitter <u>Application:</u> Temperature transmitter on a circulation loop for WFI. Temperature is always maintained at 85 deg C, transmitter is located in a protected area that does not get washed down. Temperature transmitter is rated to handle the sanitizing temperatures for the system. Basis for change: | Instrument
Type | Inst. Class
Critical?Y or N | - | Probability of
Occurrence | Severity of failure | Detectability of
Failure | Risk
Score
(Failure
Mode) | Recommended
Calibration
Period
(Months) from
table: | Basis for Change Calibration
Interval:
Medium probability of failure,
medium severity, and medium
delectability. Cautiously extend
the interval, by a factor of x1.5 | |----------------------------|--------------------------------|-----|------------------------------|---------------------|-----------------------------|------------------------------------|---|---| | Temperature
Transmitter | Υ | WFI | 2 | 2 | 2 | 8
(medium) | 6 months | 9 months | ## Example #2: Instrument: Pressure Indicator <u>Application:</u> Pressure indicator on a large reactor vessel. Need to assure positive pressure in the reactor, but maintain pressure below tank safety rating. Tank is washed down, goes through vacuum / pressure cycles, and occasionally goes over-pressure (blows the relief). Basis for change: | Instrument
Type | Inst. Class
Critical?Y or N | 5 | Probability of
Occurrence | Severity of failure | Detectability of
Failure | Risk
Score
(Failure
Mode) | Recommended
Calibration Period
(Months) from
table: | Basis for Change Calibration Interval: High (or unknown) probability of occurrence, medium severity, and high detect ability risk. Consider shortening the calibration interval based on the calculated risk (high). | |-----------------------|--------------------------------|---------|------------------------------|---------------------|-----------------------------|------------------------------------|--|--| | Pressure
Indicator | Υ | Reactor | 3 | 2 | 3 | 18
(high) | 12 months | 6 months | Example #3: <u>Instrument:</u> Humidity Transmitter <u>Application:</u> Ambient humidity sensor in a conditioned room. *This transmitter is an alarm point only*. The Building Management System (BMS) controls the temperature and humidity, and a chart recorder records them, providing very easy detect ability of failure. Basis for change: | Instrument
Type | Inst. Class
Critical? Y or N | S | Probability of
Occurrence | Severity of failure | Detectability of
Failure | Risk
Score
(Failure
Mode) | Recommended
Calibration
Period
(Months) from
table: | Basis for Change Calibration
Interval: Since it is low
probability and easily detected,
consider increasing the calibration
interval to 24 months. | |-------------------------|---------------------------------|-----------------|------------------------------|---------------------|-----------------------------|------------------------------------|---|--| | Humidity
Transmitter | Υ | Packout
Room | 1 | 3 | 1 | 3
(low) | 12 | 24 months | Example #4: Instrument: O2 Sensor <u>Application:</u> Oxygen sensor detecting *breathable* concentration of O2 in an area using liquid nitrogen as a coolant. Typically these devices are covered by a LOPA (layers of protection assessment) evaluation to determine the safety factors. Basis for change: | Instrument
Type | Inst. Class
Critical?Y or N | > | Probability of
Occurrence | Severity of failure | Detectability of Failure | Risk
Score
(Failure
Mode) | Recommended
Calibration
Period
(Months) from
table: | Basis for Change Calibration Interval: Since the history of these devices is awful, and the severity is very high (human injury or death), and detect ability presents a high risk, consider decreasing the calibration interval to 3 months and reengineering the detection system to mitigate the risks of single-unit failure. | |-----------------------|--------------------------------|---------|------------------------------|---------------------|--------------------------|------------------------------------|---|---| | O ₂ Sensor | Υ | Reactor | 3 | 3 | 3 | 27
(high) | 6 | 3 months | Example #5: Instrument: RPM Indicator Application: Direct drive gearbox from a synchronous motor. Basis for change: | Instrument
Type | Inst. Class
Critical?Y or N | Associated System | Probability of
Occurrence | _ | Detectability of
Failure | Risk
Score
(Failure
Mode) | Recommended
Calibration
Period
(Months) from
table: | Basis for Change Calibration
Interval:
Overall negligible risk, consider
increasing the calibration interval
up to 36 months. | |--------------------|--------------------------------|-------------------|------------------------------|---|-----------------------------|------------------------------------|---|---| | RPM
Indicator | Υ | Reactor | 1 | 1 | 1 | 1
(low) | 18 | 36 months |